

Sony Biotechnology Inc.

LE-B3001

Page 1 of 7

Automatic Setup Beads for Cell Sorter SH-800 LE-B3001

SH01-BEADSINSTR-BL01

Handling Instructions

For reaserch applications only. Not for diagnostic use.

©2012 Sony Corporation Printed in Austria

A-EAH-100-11 (1)

Introduction

This product contains two, different-sized populations of fluorescent beads. One population is used to precisely calibrate the drop delay for sorting on the SONY LE-SH800 Cell Sorter. The other population features broad-spectrum fluorescence intensity and is used to align the fluidics and optics for the LE-SH800.

Note:

Shake vigorously or vortex before use. Store under refrigerated conditions. Expires one year after receipt.

Storage

- Do not freeze.
- Keep the beads away from sunlight.
- Keep the beads refrigerated.
 The recommended range is 2 °C to 8 °C (35.6 °F to 46.4 °F).

Specifications

Capacity	10 ml
Density	$3 \mu m$ beads: $2.5 \times 10^6 / ml$ 10 μm beads: $5.0 \times 10^6 / ml$ Total: $7.5 \times 10^6 / ml$
Storage buffer	DI water with 0.02% Sodium Azide and 0.01% NP40
Storage temperature	2 °C to 8 °C (35.6 °F to 46.4 °F) after first use. Stable at room temperature.
Contents	3 bottles

North America/International

1730 North First Street San Jose, CA 95112 U.S.A. Voice: +1 800-275-5963 FAX: +1 408-352-4130 sales@sonybiotechnology.com http://www.sonybiotechnology.com Japan

1-7-1, Konan, Minato-Ku, Tokyo , 108-0075 Japan Tel: +120-677-010 Fax:+120-388-060 sales_Japan@sonybiotechnology.com http://www.sony.co.jp/LS Europe

The Heights, Brooklands. Weybridge, Surrey, KT13 0XW, UK Tel: +44 (0) 1932 817448 sales_EU@sonybiotechnology.com Handling Instructions

LE-B3001

Instructions for use

Automatic setup beads are for the alignment and drop delay verification of the LE-SH800. The concentration of beads, as supplied, provides the optimum number of beads for analysis by flow cytometry. Dilution of the beads is not recommended.

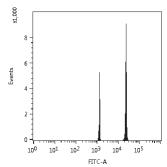
Preparation of beads

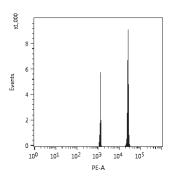
- **1.** Vortex the particles vigorously before use.
- **2.** Prepare a calibration sample by placing 10 drops of Automatic setup beads in a 5ml round tube.

Automatic calibration

The LE-SH800 startup procedure automatically performs cell sorting chip alignment, droplet calibration, sort delay calibration, and side stream calibration using Automatic setup beads.

- 1. Place the 5ml round tube in the corresponding sized tube adapter, and insert the adapter into the sample loader.
- **2.** Click the [OK] button on the Auto Calibration screen.


Note:


If the value for any parameter varies significantly from day-to-day average or preset values, obtained over an interval of at least one month, recalibrate the alignment as described in the LE-SH800 Cell Sorter Operator's Guide.

Characteristics

Optical alignment (using 488 nm laser excitation)

The following histogram plots show the fluorescence intensity of the two populations of beads when excited by a 488 nm laser in the FITC and PE channels. The beads are used for optical alignment of the sorting chip.

LE-B3001

Handling Instructions

Droplet sorting (using 638 nm laser excitation)

The following Droplet Camera images show an example of correct drop delay calibration. The Droplet camera image shows fluorescence collected from the beads, excited by a 638 nm laser. The beads are used to adjust the sorting delay by adjusting the vertical position of the fluorescence image relative to the sorting chip.

