PE/Cyanine7 anti-human CD32B/C

Catalog # / 2591565 / 25 tests

Size: 2591570 / 100 tests

Clone: \$18005H

Isotype: Mouse IgG1, κ

Immunogen: Recombinant Human Fc gamma

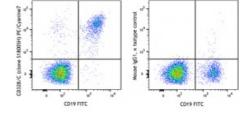
RIIB/C (CD32b/c) Protein

Reactivity: Human

Preparation: The antibody was purified by affinity

chromatography and conjugated with

PE/Cyanine7 under optimal


conditions.

Formulation: Phosphate-buffered solution, pH 7.2,

containing 0.09% sodium azide and

0.2% (w/v) BSA (origin USA)

Concentration: Lot-specific

Human peripheral blood lymphocytes were stained with CD19 FITC and CD32B/C (clone S18005H) PE/Cyanine7 (left) or mouse IgG1, κ PE/Cyanine7 isotype control (right).

Applications:

Applications: Flow Cytometry

Recommended E

Usage:

Notes:

Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of this reagent is 5 μL per million cells in 100 μL staining volume or 5 μL per 100 μL of whole blood. It is recommended that the reagent be titrated for optimal performance for each application.

Application

As the extracellular region of CD32B and CD32C are identical, this Ab

recognizes both isoforms. Does not crossreact with CD32A.

Description: CD32B (FCGR2B) and CD32C (FCGR2C) are 40 kDa, type I transmembrane

proteins that are members of the Ig superfamily of low-affinity

immunoglobulin gamma Fc receptors. CD32B has a cytoplasmic tail that contains an immunoreceptor tyrosine-based inhibition motif (ITIM), while CD32C contains an immunoreceptor tyrosine-based activation motif (ITAM). CD32B and CD32C are low affinity receptor for monomeric IgG but also bind IgG complexes. CD32B and CD32C are expressed on B cells, subsets of monocytes, macrophages and granulocytes, platelets, mast cells, and is a

negative regulator of cell activation, proliferation, endocytosis,

phagocytosis, and degranulation.

Antigen References:

- 1. Bruhns P, et al. 2009. Blood. 113: 3716.
- 2. Bewarder N, et al. 1996. Mol Cell Biol. 16: 4735.
- 3. Descours B, et al. 2017. Nature. 543: 564.
- 4. Tomiyama Y, et al. 1992. Blood. 80: 2261.
- 5. Indik Z, *et al.* 1991. *J Clin Invest.* 88: 1766.
- 6. Ramsland PA, et al. 2011. J Immunol. 187: 3208.
- 7. Hogarth PM and Pietersz GA. 2012. Nat Rev Drug Discov. 11: 311.
- 8. Bournazos S, et al. 2009. J Immunol. 182: 8026.
- 9. Maxwell KF, et al. 1999. Nat Struct Biol. 6: 437.
- 10. Sandilands GP, et al. 1997. Immunology. 91: 204.
- 11. Ghazizadeh S, et al. 1994. J Biol Chem. 269: 8878.
- 12. Gillis C, et al. 2014. Front Immunol. 5: 254.