Alexa Fluor® 647 anti-human CD307c/FcRL3

Catalog # / Size: 2472040 / 100 tests

2472035 / 25 tests

Clone: H5/FcRL3

Isotype: Mouse IgG2b, κ

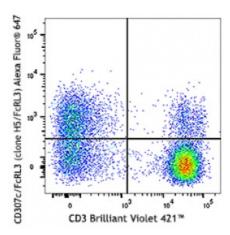
Immunogen: FcRL3 full length expression plasmid

DNA, followed by cell boost using transiently transfected cells with the

same plasmid.

Reactivity: Human

Preparation: The antibody was purified by affinity


chromatography and conjugated with Alexa Fluor® 647 under optimal conditions. The solution is free of unconjugated Alexa Fluor® 647.

Formulation: Phosphate-buffered solution, pH 7.2,

containing 0.09% sodium azide and

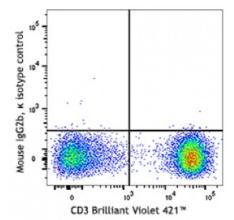
0.2% (w/v) BSA (origin USA).

Concentration: Lot-specific

Human peripheral blood lymphocytes were surface stained with CD3 Brilliant Violet 421™ and H5/FcRL3 Alexa Fluor® 647 (top) or

Mouse IgG2b

Applications:


Applications: Flow Cytometry

Recommended Usage:

ended Each lot of this antibody is quality

control tested by immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of this reagent is 5 μ l per million cells or 5 μ l per 100 μ l of whole blood. It is recommended that the

reagent be titrated for optimal performance for each application.

* Alexa Fluor® 647 has a maximum emission of 668 nm when it is excited at 633 nm / 635 nm.

Application References:

1. Bin Dhuban K, et al. 2015. J. Immunol. 194(8):3687-96.

2. Yuan M, et al. 2016. Mol. Neurobiol. 53:2029-35.

3. Fang Y, et al. 2016. Immunobiology. 221(1):56-62.

Description:

CD307c is a type 1 transmembrane glycoprotein in the FcRL family of the Ig gene superfamily that is conserved in humans and not found in mice. It is expressed on NK cells, T cell, regulatory T cell, B cell and plasma cell subsets. Intracellular ITAM and ITIM motifs in conjunction with extracellular Ig domains are thought to play a role in the regulation of immune response, and autoimmune function. Impairment of normal FcRL3 function has been linked to systemic lupus erythematosus,

rheumatoid arthritis, and autoimmune thyroid disease.

Antigen 1. Bin Dhuban K, et al. 2015. J. Immunol. 194(8):3687-96.

2. Yuan M, <i>et al.</i> 2016. <i>Mol. Neurobiol.</i> 53:2029-35. 3. Fang Y, <i>et al.</i> 2016. <i>Immunobiology.</i> 221(1):56-62.