PE/Cy7 anti-human HLA-G

Catalog # / Size: 2279560 / 100 tests

2279555 / 25 tests

Clone:

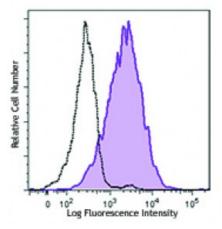
Isotype: Mouse IgG2a, κ

HLA-G transfected cells Immunogen:

Reactivity: Human

Preparation: The antibody was purified by affinity

chromatography and conjugated with PE/Cy7 under optimal conditions. The solution is free of unconjugated PE/Cy7


and unconjugated antibody.

Formulation: Phosphate-buffered solution, pH 7.2,

containing 0.09% sodium azide and

0.2% (w/v) BSA (origin USA).

Concentration: Lot-specific

Human cytotrophoblastic cell line (JEG-3) was stained with HLA-G (clone 87G) PE/Cy7 (filled histogram) or mouse IgG2a, k PE/Cy7 isotype control (open histogram).

Applications:

Flow Cytometry **Applications:**

Recommended

Usage:

Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of this reagent is 5 microL per million cells or 5 microL per 100 microL of whole blood. It is recommended that the reagent be titrated for optimal performance for

each application.

Application

Notes:

87G mAb reacts with isoforms of HLA-G1 and -G5. Additional reported applications (for the relevant formats) include: restoring HLA-G mediated

suppression of allo-T cell proliferation and immunohistochemical staining of frozen

tissue sections. Clone 87G is reported not to bind HLA-G in aldehyde fixed

samples.4

Application References:

1. Odum N, et al. 1991. Eur. J. Immunol. 21:2121.

2. Lila N, et al. 2001. P. Natl. Acad. Sci. USA 98:12150.

3. Lila N, et al. 2002. Circulation. 105:1949.

4. Blaschitz A, et al. 2000. Hum. Immunol. 61:1074.

5. Balsamo M, et al. 2012. Eur J. Immunol. 42:1833. PubMed

Description: HLA-G is a nonclassical MHC class I (MHC-Ib) molecule structurally related to MHC

class Ia (HLA-A,B, C). There are seven isoforms of this molecule, including membrane bound HLA-G1, -G2, -G3 and -G4 and soluble HLA-G5, -G6, and -G7. HLA-G is primarily expressed on trophoblast cells. Its expression is also found on thymic epithelial cells, cytokine-activated moncytes, macrophages/dendritic cells during viral infection, and in various tumors. HLA-G exerts its inhibitory functions

to regulate immune tolerance via interaction with inhibitory receptors

ILT2(CD85j), ILT4(CD85d), and KIR2DL4(CD158d), which is expressed on NK cells, T cells, monocytes, dendritic cells, and B cells. HLA-G is also able to bind CD8 α/α ,

which may mediate positive and/or negative selection in thymus.

Antigen 1. Hunt JS, et al. 2005. FASEB J. 19:681.

References.	2. Carosella ED, <i>et al.</i> 2006. <i>Biood</i> 111.4602.