Product Data Sheet

Pacific Blue™ anti-human CD40

Catalog # / Size: 2271595 / 25 μg

2271600 / 100 µg

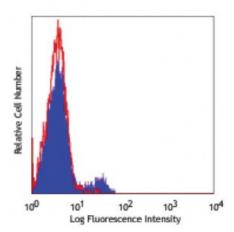
Clone: 5C3

Isotype: Mouse IgG1, κ

Reactivity: Human

Preparation: The antibody was purified by affinity

chromatography, and conjugated with Pacific Blue™ under optimal conditions. The solution is free of unconjugated


Pacific Blue™.

Formulation: Phosphate-buffered solution, pH 7.2,

containing 0.09% sodium azide.

Workshop Number: V CD40.4

Concentration: 0.5

Human peripheral blood lymphocytes stained with 5C3

Pacific Blue™

Applications:

Applications: Flow Cytometry

Recommended

Usage:

Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of this reagent is ≤1.0microg per million cells in 100 microL volume or 100 microL of whole blood. It is recommended that the reagent be titrated for optimal

performance for each application.

* Pacific Blue™ has a maximum emission of 455 nm when it is excited at 405 nm. Prior to using Pacific Blue™ conjugate for flow cytometric analysis, please verify your flow cytometer's capability of exciting and detecting the fluorochrome.

Application Notes:

Additional reported applications (for the relevant formats) include: costimulation of B cell proliferation1, partial inhibition of CD40 binding to CD40L3, and B cell rescue from apoptosis1. The LEAF $^{\text{TM}}$ purified antibody (Endotoxin <0.1 EU/microg,

Azide-Free, 0.2 μm filtered) is recommended for functional assays.

Application References:

1. Schlossman SF, et al. 1995. ed. Leukocyte Typing V:White Cell Differentiation

Antigens. New York:Oxford University Press.

2. Yoshino N, et al. 2000. Exp. Anim. (Tokyo) 49:97. (FC)

3. Pound JD, et al. 1999. Int. Immunol. 11:11. (Block)

Description:

CD40 is a 48 kD type I glycoprotein also known as BP50. It is a member of the TNFR superfamily primarily expressed on B cells, macrophages, follicular dendritic cells, endothelial cells, fibroblasts, and at low levels on plasma cells. CD40 has been reported to be involved in B cell differentiation, costimulation, isotype class-switching, and protection of B cells from apoptosis. Additionally, CD40 is important for T cell-B cell interactions. The ligand of CD40 is CD154 (CD40 ligand). The 5C3 antibody has been reported to promote B cell proliferation in the presence of anti-IgM, IL-4 or PMA, partially blocking CD40 binding to CD40L, and B

cells rescue from apoptosis.

Antigen 1. Banchereau J, et al. 1994. Annu. Rev. Immunol. 12:881.

References.	2. Foy 1, et al. 1990. Allilu. Rev. Illilliullol. 14:591.