Pacific Blue™ anti-human CD279 (PD-1) **Catalog # / Size:** 2249575 / 25 μg 2249580 / 100 µg Clone: EH12.2H7 Isotype: Mouse IgG1, κ Reactivity: Human **Preparation:** The antibody was purified by affinity chromatography, and conjugated with Pacific Blue™ under optimal conditions. The solution is free of unconjugated Pacific Blue™. **Formulation:** Phosphate-buffered solution, pH 7.2, containing 0.09% sodium azide. **Concentration:** 0.5 Human peripheral blood lymphocytes were stained with CD279 (clone EH12.2H7) Pacific Blue™ and CD3 (clone UCHT1) FITC. ## **Applications:** **Applications:** Flow Cytometry Recommended Usage: Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of this reagent is \leq 1.0microg per 10^6 cells in 100 microL volume or 100 microL of whole blood. It is recommended that the reagent be titrated for optimal performance for each application. * Pacific Blue $^{\rm TM}$ has a maximum emission of 455 nm when it is excited at 405 nm. Prior to using Pacific Blue $^{\rm TM}$ conjugate for flow cytometric analysis, please verify your flow cytometer's capability of exciting and detecting the fluorochrome. Application Notes: Additional reported applications (for the relevant formats) include: blocking of 3 and binding¹ ligand immunohistochemical staining ٥f paraformaldehyde fixed frozen sections¹³. The LEAF[™] purified antibody (Endotoxin < 0.1 EU/µg, Azide-Free, 0.2 µm filtered) is recommended for functional assays (Cat. No. 329911 and 329912). For highly sensitive assays, we Ultra-LEAF™ recommend purified antibody (Cat. No. 329926) with a lower endotoxin limit than standard LEAF™ purified antibodies (Endotoxin < 0.01 PHA-stimulated (day-3) human peripheral blood lymphocytes were stained with CD279 (clone EH12.2H7) Pacific Blue™ (filled histogram) or mouse IgG1, κ Pacific Blue™ (open histogram). ### EU/microg). # Application References: - 1. Dorfman DM, et al. 2006 Am. J. Surg. Pathol. 30:802. (FA) - 2. Radziewicz H, et al. 2007. J. Virol. 81:2545. (FA) - 3. Velu V, et al. 2007. J. Virol. 81:5819. (FA) - 4. Zahn RC, et al. 2008. J. Virol. 82:11577. PubMed - 5. Chang WS, et al. 2008. J. Immunol. 181:6707. (FC) PubMed - 6. Nakamoto N, et al. 2009. PLoS Pathog. 5:e1000313. (FA) - 7. Jones RB, et al. 2009. J. Virol. 83:8722. (FC) PubMed - 8. Vojnov L, *et al.* 2010. *J. Virol.* 84:753. (FC) <u>PubMed</u> - 9. Radziewicz H, et al. 2010. J. Immunol. 184:2410. (FC) PubMed - 10. Monteriro P, et al. 2011. J. Immunol. 186:4618. PubMed - 11. Conrad J, et al. 2011. J. Immunol. 186:6871. PubMed - 12. Salisch NC, et al. 2010. J. Immunol. 184:476. (Rhesus reactivity) - 13. Li H and Pauza CD. 2015. Eur. J. Immunol. 45:298. (IHC) #### **Description:** Programmed cell death 1 (PD-1), also known as CD279, is a 55 kD member of the immunoglobulin superfamily. CD279 contains the immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic region and plays a key role in peripheral tolerance and autoimmune disease. CD279 is expressed predominantly on activated T cells, B cells, and myeloid cells. PD-L1 (B7-H1) and PD-L2 (B7-DC) are ligands of CD279 (PD-1) and are members of the B7 gene family. Evidence suggests overlapping functions for these two PD-1 ligands and their constitutive expression on some normal tissues and upregulation on activated antigen-presenting cells. Interaction of CD279 ligands results in inhibition of T cell proliferation and cytokine secretion.