Pacific Blue™ anti-human CD14

Catalog # / Size: 2228080 / 100 μg

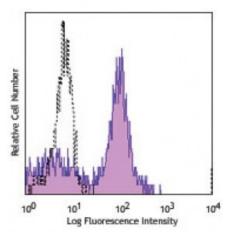
2228075 / 25 μg

Clone: HCD14

Isotype: Mouse IgG1, κ

Reactivity: Human

Preparation: The antibody was purified by affinity


chromatography, and conjugated with Pacific Blue™ under optimal conditions. The solution is free of unconjugated

Pacific Blue™.

Formulation: Phosphate-buffered solution, pH 7.2,

containing 0.09% sodium azide.

Concentration: 0.5

Human peripheral blood monocytes were stained with CD14 (HCD14) Pacific Blue™ (filled histogram) or mouse IgG1, κ Pacific Blue™ isotype control (open histogram).

Applications:

Applications: Flow Cytometry

Recommended Usage:

Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. The suggested use of this reagent is \leq 2.0 microg per 10^6 cells in 100 microL volume or 100 microL of whole blood. It is highly recommended that the reagent be titrated for optimal performance for each application.

* Pacific Blue™ has a maximum emission of 455 nm when it is excited at 405 nm. Prior to using Pacific Blue™ conjugate for flow cytometric analysis, please verify your flow cytometer's capability of exciting and detecting the fluorochrome.

Application Notes:

Additional reported applications (for the relevant formats) include: immunofluorescence microscopy. This clone was tested in-house and does not

work on formalin fixed paraffin-embedded (FFPE) tissue.

Application References:

1. McMichael A, et al. 1987. Leucocyte Typing III. Oxford University Press. New

2. Knapp W, et al. Eds. 1989. Leucocyte Typing IV. Oxford University Press. New York

3. Schlossman S, et al. Eds. 1995. Leucocyte Typing V. Oxford University Press. New York.

Description: CD14 is a 53-55 kD glycosylphosphatidylinositol (GPI)-linked membrane

glycoprotein also known as LPS receptor. CD14 is expressed at high levels on monocytes and macrophages, and at lower levels on granulocytes. Some dendritic cell populations such as interfollicular dendritic cells, reticular dendritic cells, and Langerhans cells have also been reported to express CD14. As a high-affinity receptor for LPS, CD14 is involved in the clearance of gram-negative pathogens and in the upregulation of adhesion molecules and cytokines

expression in monocytes and neutrophils.

Antigen 1. Stocks S, et al. 1990. Biochem. J. 268:275.

Reterences:	2. Wright S, <i>et al.</i> 1990. <i>Science</i> 249:1434.