Product Data Sheet

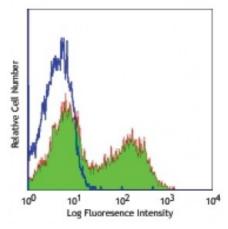
Biotin anti-human CD154

Catalog # / Size: 2154070 / 100 μg

Clone: 24-31

Isotype: Mouse IgG1, κ

Reactivity: Human


Preparation: The antibody was purified by affinity

chromatography, and conjugated with biotin under optimal conditions. The solution is free of unconjugated biotin.

Formulation: Phosphate-buffered solution, pH 7.2,

containing 0.09% sodium azide.

Concentration: 0.5

TPA+ ionomycin-stimulated human PBMCs (5 hours) stained with biotinylated 24-31, followed by Sav-PF

Applications:

Applications: Flow Cytometry

Recommended

Usage:

Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of

this reagent is \leq 0.5 microg per million cells in 100 microL volume. It is recommended that the reagent be titrated for optimal performance for each

application.

Application

Notes:

Additional reported applications (for the relevant formats) include:

immunofluorescence microscopy 1,3 and blocking of T cell-dependent B cell differentiation 1,2,4,5 . The LEAF $^{\text{\tiny TM}}$ purified antibody (Endotoxin <0.1 EU/ μ g, Azide-Free, 0.2 μ m filtered) is recommended for functional assays (Cat. No. 310812). For highly sensitive assays, we recommend Ultra-LEAF $^{\text{\tiny TM}}$ purified antibody (Cat. No. 310828) with a lower endotoxin limit than standard LEAF $^{\text{\tiny TM}}$ purified antibodies

(Endotoxin < 0.01 EU/microg).

Application References:

- 1. Brams P, et al. 2001. Int. Immunopharmacol. 1:277. (Block, IF)
- 2. Rushworth SA, et al. 2002. Transplantation 73:635. (Block)
- 3. Berner B, et al. 2000. Ann. Rheum. Dis. 59:190. (IF)
- 4. Nordström T, et al. 2006. J. Leukocyte Biol. 79:319. (Block)
- 5. Zhang AL, et al. 2007. Blood doi:10.1182/blood-2007-02-076364. (Block) PubMed
- 6. Kuchen S, et al. 2007. J. Immunol. 179:5886.
- 7. Matus-Nicodermos R, et al. 2011. J. Immunol. 186:2164. PubMed

Description: CD154 (CD40 ligand) is also known as CD40L, gp39, TRAP and T-BAM. CD40

ligand is a 32-39 kD type II transmembrane glycoprotein. It is a member of the TNF superfamily and is expressed on activated T cells. It has been reported to be important for B cell costimulation following binding of its receptor, CD40. Additionally, binding of CD40L to CD40 on B cells promotes the secretion of immunoglobulin and Ig isotype switching. CD40L is also involved in the regulation

of cytokine production by T cells.

Antigen References:

1. Najafian N, et al. 2003. Expert Opin. Biol. Ther. 3:227. 2. Racke M, et al. 2002. Expert Opin. Ther. Targets. 6:275.

3. Fold G, <i>et al.</i> 1999. <i>J. Illillianol.</i> 10	2.4037.