
Spark Violet[™] 423 anti-human HLA-DR

Catalog # / Size:	2138425 / 25 tests 2138430 / 100 tests
Clone:	L243
Isotype:	Mouse lgG2a, к
Reactivity:	Human, Non-human primate, Other
Preparation:	The antibody was purified by affinity chromatography and conjugated with Spark Violet™ 423 under optimal conditions.
Formulation:	Phosphate-buffered solution, pH 7.2, containing 0.09% sodium azide and 0.2% (w/v) BSA (origin USA)
Concentration:	Lot-specific

Human peripheral blood lymphocytes were stained with anti-human CD19 APC and antihuman HLA-DR (clone L243) Spark Violet[™] 423 (left) or with antihuman CD19 APC only (right).

Applications:

Applications: Flow Cytometry

Recommended Usage: Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of this reagent is 5 μ L per million cells in 100 μ L staining volume or 5 μ L per 100 μ L of whole blood. It is recommended that the reagent be titrated for optimal performance for each application.

* Spark Violet $^{\rm m}$ 423 has a maximum excitation of 400 nm and a maximum emission of 415 nm.

Application
 Notes: The L243 monoclonal antibody reacts with the HLA-DR antigen, a member of MHC class II molecules. It does not cross react with HLA-DP and HLA-DQ. Clone L243 binds a conformational epitope on HLA-DRa which depends on the correct folding of the aß heterodimer.¹⁹

Additional reported applications (for the relevant formats) include: immunoprecipitation⁸, Western blotting⁸, *in vitro* blocking of mixed lymphocyte reactions^{9,10}, depeletion of MHC class II cells⁷, and immunohistochemical staining of acetone-fixed frozen sections^{4,5}. For sensitive functional assays, we recommend using the Ultra-LEAF^M purified antibody (Endotoxin < 0.01 EU/µg, Azide-Free, 0.2 µm filtered) (Cat. No. 307648, 307665 - 307669).

Application References:	 Brodsky F. 1984. <i>Immunogenetics</i> 19:179. Robbins P, et al. 1987. <i>Human Immunol</i>. 18:301. Stites D, et al. 1986. <i>Clin. Immunol. Immunopathol</i>. 38:161. Warnke R, et al. 1980. <i>J. Histochem. Cytochem</i>. 28:771. (IHC) Engleman E, et al. 1981. <i>P. Natl. Acad. Sci. USA</i> 78:1791. (IHC) Zipf T, et al. 1981. <i>Cancer Res.</i> 41:4786. Goodier M, et al. 2000. <i>J. Immunol</i>. 165:139. (Depletion) Esser M, et al. 2001. <i>J. Virol</i>. 75:6173. (IP, WB) Kalka-Moll WM, et al. 2002. <i>J. Immunol</i>. 169:6149. (Block) Wang RF, et al. 1999. <i>Science</i> 284:1351. (Block) Zaba LC, et al. 2007. <i>J. Exp. Med</i>. 204:3183. <u>PubMed</u> Fujita H, et al. 2009. <i>P. Natl. Acad. Sci. USA</i> 106:21795. <u>PubMed</u> Charles N, et al. 2010. <i>Infect. Immun.</i> 78:4763. <u>PubMed</u> Goncalves RM, et al. 2010. <i>Infect. Immun.</i> 78:4763. <u>PubMed</u> Yoshino N, et al. 2006. <i>Am. J. Pathol</i>. 168:822. (FC) Kim WK, et al. 2011. <i>Leuk. Lymphoma</i> 52:273. Galkowska H, et al. 1996. <i>Vet. Immunol. Immunopathol.</i> 53:329. Moro M, et al. 2005. <i>BMC Immunol.</i> 6:24. Lauterbach N, et al. 2014. <i>Mol Immunol.</i> 59:19. <u>PubMed</u>
Description:	HLA-DR is a heterodimeric cell surface glycoprotein comprised of a 36 kD α (heavy) chain and a 27 kD β (light) chain. It is expressed on B cells, activated T cells, monocytes/macrophages, dendritic cells, and other non-professional APCs. In conjunction with the CD3/TCR complex and CD4 molecules, HLA-DR is critical for efficient peptide presentation to CD4 ⁺ T cells.
Antigen References:	 Levacher M, et al. 1990. Clin. Exp. Immunol. 81:177. Terstappen L, et al. 1990. J. Leukocyte Biol. 48:138. Edwards JA, et al. 1986. J. Immunol. 137:490. van Es A, et al. 1984. Transplantation 37:65. O'Doherty U, et al. 1994. Immunology 82:487. Thomas R, et al. 1994. J. Immunol. 153:4016. Grouard G. et al. 1996. Nature 384:364

7. Grouard G, et al. 1996. Nature 384:364.