
PE/Fire[™] 640 anti-human CD16

Catalog # / Size:	2110335 / 25 tests 2110340 / 100 tests	
Clone:	3G8	
lsotype:	Mouse IgG1, к	0199
Immunogen:	Human PMN cells	CD16 (clone 3C8) PE/Fire* 640
Reactivity:	Human, Non-human primate	clone 368
Preparation:	The antibody was purified by affinity chromatography and conjugated with PE/Fire™ 640 under optimal conditions.	-1
Formulation:	Phosphate-buffered solution, pH 7.2, containing 0.09% sodium azide and 0.2% (w/v) BSA (origin USA)	Н
Workshop Number:	V NK80	l yı CE ar
Concentration:	Lot-specific	64

Human peripheral blood lymphocytes were stained with CD56 (NCAM) Alexa Fluor® 647 and CD16 (clone 3G8) PE/Fire™ 640 (left), or CD56 (NCAM) Alexa Fluor® 647 only (right).

Applications:

Applications: Flow Cytometry

Recommended Usage: Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of this reagent is 5 μ L per million cells in 100 μ L staining volume or 5 μ L per 100 μ L of whole blood. It is recommended that the reagent be titrated for optimal performance for each application.

* PE/Fire $^{\rm m}$ 640 has a maximum excitation of 566 nm and a maximum emission of 639 nm.

Application
Notes:The 3G8 antibody clone blocks neutrophil phagocytosis and stimulates NK
cell proliferation. It has been reported that this clone interacts with the
FcyRIIa and FcyRIIIb receptors causing neutrophil activation and
aggregation18. Due to this phenomenon staining in whole blood may cause a
reduction in the number of granulocytes or alter their scatter profile.

Additional reported applications (for the relevant formats) include: immunohistochemical staining of acetone-fixed frozen tissue sections⁶, immunoprecipitation³, stimulation of NK cell proliferation⁴, blocking of phagocytosis⁵, and blocking of immunoglobulin binding to FcγRIII^{7,8}. The Ultra-LEAFTM purified antibody (Endotoxin < 0.01 EU/µg, Azide-Free, 0.2 µm filtered) is recommended for functional assays (Cat. No. 302049, 302050, 302057, 302058).

Application References:	 Knapp W, <i>et al.</i> Eds. 1989. Leucocyte Typing IV. Oxford University Press. New York. Schlossman S, <i>et al.</i> Eds. 1995. Leucocyte Typing V. Oxford University Press. New York. Edberg J, <i>et al.</i> 1997. <i>J. Immunol.</i> 159:3849. (IP) Hoshino S, <i>et al.</i> 1991. <i>Blood</i> 78:3232. (Stim) Tamm A, <i>et al.</i> 1996. <i>Immunol.</i> 157:1576. (Block) Da Silva DM, <i>et al.</i> 2001. <i>Int. Immunol.</i> 13:633. (IHC) Holl V, <i>et al.</i> 2004. <i>J. Immunol.</i> 173:6274. (Block) Hober D, <i>et al.</i> 2002. <i>J. Gen. Virol.</i> 83:2169. (Block) Brainard DM, <i>et al.</i> 2009. <i>J. Virol.</i> 83:7305. PubMed Smed-Sörensen A, <i>et al.</i> 2008. <i>Blood</i> 111:5037. (Block) PubMed Timmerman KL, <i>et al.</i> 2008. <i>J. Leukoc. Biol.</i> 84:1271. (FC) PubMed Yoshino N, <i>et al.</i> 2010. <i>PLoS One</i> 5:e9787. (FC) Rout N, <i>et al.</i> 2010. <i>J. Silo Chem.</i> 286:21896. PubMed Wu Z, <i>et al.</i> 2013. <i>J. Virol.</i> 87:7717. PubMed Peterson VM, <i>et al.</i> 2017. <i>Nat. Biotechnol.</i> 35:936. (PG) Vossebeld PJ, et al. 1997. <i>Biochem J.</i> 323:87-94 (Stim)
Description:	CD16 is known as low affinity IgG receptor III (Fc γ RIII). It is expressed as two distinct forms (CD16a and CD16b). CD16a (Fc γ RIIIA) is a 50-65 kD polypeptide-anchored transmembrane protein. It is expressed on the surface of NK cells, activated monocytes, macrophages, and placental trophoblasts in humans. CD16b (Fc γ RIIIB) is a 48 kD glycosylphosphatidylinositol (GPI)- anchored protein. Its extracellular domain is over 95% homologous to that of CD16a, and it is expressed specifically on neutrophils. CD16 binds aggregated IgG or IgG-antigen complex which functions in NK cell activation, phagocytosis, and antibody-dependent cell-mediated cytotoxicity (ADCC).
Antigen References:	1. Fleit H, <i>et al.</i> 1982. <i>P. Natl. Acad. Sci. USA</i> 79:3275. 2. Stroncek D, <i>et al.</i> 1991. <i>Blood</i> 77:1572. 3. Wirthmueller II. <i>et al.</i> 1992. <i>J. Exp. Med.</i> 175:1381

3. Wirthmueller U, et al. 1992. J. Exp. Med. 175:1381.