Product Data Sheet

Alexa Fluor® 700 anti-human CD11c

Catalog # / 2108240 / 100 tests

Size: 2108235 / 25 tests

Clone: 3.9

Isotype: Mouse IgG1, κ

Reactivity: Human, Non-human primate, Other

Preparation: The antibody was purified by affinity

chromatography and conjugated with Alexa Fluor® 700 under optimal conditions. The solution is free of unconjugated Alexa Fluor® 700.

Formulation: Phosphate-buffered solution, pH 7.2,

containing 0.09% sodium azide and

0.2% (w/v) BSA (origin USA).

Workshop Number: III NL707

Concentration: Lot-specific

Human peripheral blood monocytes were stained with Alexa Flour® 700 anti-human CD11c (clone 3.9) (filled histogram) or mouse IgG1, κ Alexa Flour® 700 isotype control (open histogram).

Applications:

Applications: Flow Cytometry

Recommended Usage:

Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of this reagent is 5 μ l per million cells in 100 μ l staining volume or 5 μ l per 100 μ l of whole

blood.

* Alexa Fluor® 700 has a maximum emission of 719 nm when it is excited at 633 nm / 635 nm. Prior to using Alexa Fluor® 700 conjugate for flow cytometric analysis, please verify your flow cytometer's capability of exciting and detecting the fluorochrome.

Human peripheral blood lymphocytes were stained with PE anti-human CD3 and Alexa Flour® 700 anti-human CD11c (clone 3.9) (left) or mouse IgG1, κ Alexa Flour® 700 isotype control (right).

Application Notes:

Clone 3.9 preferentially binds the activated form of CD11c, is specific for the I domain of CD11c, and is able to partially block the binding of CD11c and ICAM-4. 3.9 binding is divalent cation dependent¹². While analyzing blood, it is best to use heparin as the anti-coagulant and not EDTA. Since the ability of clone 3.9 to bind to its target is divalent cation dependent, the usage of EDTA as an anti-coagulant may be detrimental to staining due to its chelating properties.

Additional reported applications (for the relevant formats) include: immunohistochemical staining of acetone-fixed frozen tissue sections⁴, and functional assays^{5,6}.

Application References:

- 1. Schlossman S, et al. Eds. 1995. Leucocyte Typing V. Oxford University Press. New York.
- 2. Knapp W, et al. 1989. Leucocyte Typing IV Oxford University Press. New York.
- 3. McMichael A, *et al.* Eds. 1987. Leucocyte Typing III Oxford University Press. New York.
- 4. Vainer B, et al. 2000. Am. J. Surg. Pathol. 24:1115. (IHC)
- 5. Ottonello L, et al. 1999. Blood 93:3505.
- 6. Metelitsa LS, et al. 2002. Blood 99:4166.
- 7. Sadhu C, et al. 2007. J. Leukoc. Biol. doi:10.1189/jlb.1106680. PubMed
- 8. Ihanus E, et al. 2007. Blood 109:802-810.
- 9. Gurer C, et al. 2008. Blood 112:1231. PubMed
- 10. Asai A, et al. 2009. J. Lipid Res. 50:95. PubMed
- 11. Yoshino N, et al. 2000. Exp. Anim. (Tokyo) 49:97. (FC)
- 12. Sadhu C, et al. 2008. J. Immunoass. Immunoch. 29:42. (FC)

Description:

CD11c is a 145-150 kD type I transmembrane glycoprotein also known as integrin α_X and CR4. CD11c non-covalently associates with integrin $\beta2$ (CD18) and is expressed on monocytes/macrophages, dendritic cells, granulocytes, NK cells, and subsets of T and B cells. CD11c has been reported to play a role in adhesion and CTL killing through its interactions with fibrinogen, CD54, and iC3b.

Antigen References:

- 1. Petty H. 1996. Immunol. Today 17:209.
- 2. Springer T. 1994. Cell 76:301.
- 3. Ihanus E, et al. 2007. Blood 109:802-810.