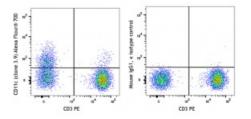

Alexa Fluor[®] 700 anti-human CD11c

Catalog # / Size:	2108235 / 25 tests 2108240 / 100 tests
Clone:	3.9
lsotype:	Mouse IgG1, к
Reactivity:	Human, Non-human primate, Other
Preparation:	The antibody was purified by affinity chromatography and conjugated with Alexa Fluor® 700 under optimal conditions. The solution is free of unconjugated Alexa Fluor® 700.
Formulation:	Phosphate-buffered solution, pH 7.2, containing 0.09% sodium azide and 0.2% (w/v) BSA (origin USA).
Workshop Number:	III NL707
Concentration:	Lot-specific



Human peripheral blood monocytes were stained with Alexa Flour® 700 anti-human CD11c (clone 3.9) (filled histogram) or mouse IgG1, ĸ Alexa Flour® 700 isotype control (open histogram).

Applications:

w Cytometry
ch lot of this antibody is quality ntrol tested by immunofluorescent ining with flow cytometric alysis. For flow cytometric ining, the suggested use of this gent is 5 µl per million cells in 0 µl staining volume or 5 µl per 0 µl of whole blood.

* Alexa Fluor® 700 has a maximum emission of 719 nm when it is excited at 633 nm / 635 nm. Prior to using Alexa Fluor® 700 conjugate for flow cytometric analysis, please verify your flow cytometer's capability of exciting and detecting the fluorochrome.

Human peripheral blood lymphocytes were stained with PE anti-human CD3 and Alexa Flour® 700 anti-human CD11c (clone 3.9) (left) or mouse IgG1, κ Alexa Flour® 700 isotype control (right).

Application Notes:	Clone 3.9 preferentially binds the activated form of CD11c, is specific for the I domain of CD11c, and is able to partially block the binding of CD11c and ICAM-4. 3.9 binding is divalent cation dependent ¹² . While analyzing blood, it is best to use heparin as the anti-coagulant and not EDTA. Since the ability of clone 3.9 to bind to its target is divalent cation dependent, the usage of EDTA as an anti-coagulant may be detrimental to staining due to its chelating properties.
	Additional reported applications (for the relevant formats) include: immunohistochemical staining of acetone-fixed frozen tissue sections ⁴ , and functional assays ^{5,6} .
Application References:	 Schlossman S, <i>et al.</i> Eds. 1995. Leucocyte Typing V. Oxford University Press. New York. Knapp W, <i>et al.</i> 1989. Leucocyte Typing IV Oxford University Press. New York. McMichael A, <i>et al.</i> Eds. 1987. Leucocyte Typing III Oxford University Press. New York. Vainer B, <i>et al.</i> 2000. <i>Am. J. Surg. Pathol.</i> 24:1115. (IHC) Ottonello L, <i>et al.</i> 1999. <i>Blood</i> 93:3505. Metelitsa LS, <i>et al.</i> 2002. <i>Blood</i> 99:4166. Sadhu C, <i>et al.</i> 2007. <i>J. Leukoc. Biol.</i> doi:10.1189/jlb.1106680. PubMed Ihanus E, <i>et al.</i> 2008. <i>Blood</i> 112:1231. PubMed Asai A, <i>et al.</i> 2009. <i>J. Lipid Res.</i> 50:95. PubMed Yoshino N, <i>et al.</i> 2000. <i>Exp. Anim. (Tokyo)</i> 49:97. (FC) Sadhu C, <i>et al.</i> 2008. <i>J. Immunoass. Immunoch.</i> 29:42. (FC)
Description:	CD11c is a 145-150 kD type I transmembrane glycoprotein also known as integrin α_X and CR4. CD11c non-covalently associates with integrin β^2 (CD18) and is expressed on monocytes/macrophages, dendritic cells, granulocytes, NK cells, and subsets of T and B cells. CD11c has been reported to play a role in adhesion and CTL killing through its interactions with fibrinogen, CD54, and iC3b.

Antigen	1. Petty H. 1996. Immunol. Today 17:209.
References:	2. Springer T. 1994. Cell 76:301.
	3. Ihanus E, et al. 2007. Blood 109:802-810.