Alexa Fluor® 700 anti-mouse Ly-6A/E (Sca-1)

Catalog # / Size: 1140710 / 100 μg

1140705 / 25 μg

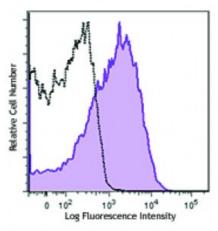
Clone: D7

Isotype: Rat IgG2a, κ

Immunogen: IL-2-dependent mouse T-cell line (CTL-L)

Reactivity: Mouse

Preparation: The antibody was purified by affinity


chromatography and conjugated with Alexa Fluor® 700 under optimal

conditions.

Formulation: Phosphate-buffered solution, pH 7.2,

containing 0.09% sodium azide.

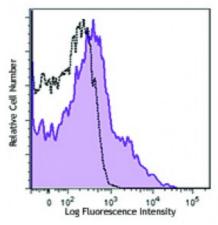
Concentration: 0.5

C57BL/6 mouse splenocytes were stained with Ly-6A/E (clone D7) Alexa Fluor® 700 (filled histogram) or rat IgG2a, κ Alexa Fluor® 700 isotype control (open histogram).

Applications:

Applications: Flow Cytometry

Recommended Usage:


Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of this reagent is ≤0.25 microg per million cells in 100 microL volume. It is recommended that the reagent be titrated for optimal performance for each application.

* Alexa Fluor® 700 has a maximum emission of 719 nm when it is excited at 633 nm / 635 nm. Prior to using Alexa Fluor® 700 conjugate for flow cytometric analysis, please verify your flow cytometer's capability of exciting and detecting the fluorochrome.

Application Notes:

The D7 antibody has been reported to induce T cell activation and inhibit TCR-induced IL-2 production. Additional reported applications (for the relevant formats) include: Western blotting^{1,2}, immunoprecipitation1, *in vitro* lymphocyte activation³⁻⁶, induction of redirected lysis⁷, induction of T cell inhibitory signalling⁸,

immunofluorescence⁹, and immunohistochemical staining of acetone-fixed frozen sections¹³ and Bouin-fixed, paraffin-embedded

C57BL/6 mouse bone marrow cells were stained with Ly-6A/E (clone D7) Alexa Fluor® 700 (filled histogram) or rat IgG2a, κ Alexa Fluor® 700 isotype control (open histogram). Data shown was gated on the lymphoid cell population.

samples⁹.

The two Sca-1 recognizing clones D7 and $\underline{\text{E13-161.7}}$ have been shown to bind distinct epitopes due to the inability of D7 to block the binding of E13-161.7.¹⁴

Application References:

- 1. Ortega G, et al. 1986. J. Immunol. 137:3240. (WB, IP)
- 2. Palfree RGE, et al. 1986. Immunogenetics 23:197. (WB)
- 3. Codias EK, et al. 1990. J. Immunol. 144:2197.
- 4. Malek TR, et al. 1986. J. Exp. Med. 164:709.
- 5. Codias EK, et al. 1990. J. Immunol. 145:1407.
- 6. Ivanov V, et al. 1994. J. Immunol. 153:2394.
- 7. Karlhofer FM, et al. 1991. J. Immunol. 146:3662.
- 8. Fleming T, *et al.* 1994. *J. Immunol.* 153:1955.
- 9. van Bragt MPA, et al. 2005. Biol. Reprod. 73:634. (IF, IHC)
- 10. Umland O, et al. 2007. J. Immunol. 178:4147.
- 11. Cridland SO, et al. 2009. Blood Cell. Mol. Dis. 45:149. (FC) PubMed
- 12. Pronk CJ, et al. 2011. J. Exp Med. PubMed
- 13. English A, et al. 2000. J. Immunol. 165:3763. (IHC)
- 14. Bamezai A and Rock KL. 1995. Proc. Natl. Acad. Sci. USA 92:4294.
- 15. Samal R, et al. 2013. J Proteomics. 75:5304. PubMed

Description:

Ly-6A/E, also known as Sca-1, is an 18 kD member of the Ly-6 multigene family. Ly6A/E is a glycosylphosphatidylinositol (GPI)-linked protein expressed on hematopoietic stem cells. In mice expressing the Ly-6.2 haplotype (e.g., AKR, C57BL, C57BR, DBA/2, SJL, SWR, and 129), Ly-6A/E is also expressed on peripheral B lymphocytes and thymic and peripheral T lymphocytes. Strains expressing the Ly-6.1 haplotype (e.g., BALB/c, CBA, C3H/He, DBA/1, and NZB) have low Ly-6A/E expression on resting peripheral lymphocytes. The expression of Ly-6A/E on lymphocytes is upregulated upon activation from both Ly6.1 and Ly6.2 haplotype mice. Ly-6A/E is thought to be involved in the regulation of both T and B cell responses.

Antigen References:

- 1. Rock KL, et al. 1989. Immunol. Rev. 111:195.
- 2. Morrison SJ, et al. 1994. Immunity 1:661.
- 3. Spangrude GJ, et al. 1988. J. Immunol. 141:3697.
- 4. Malek T, et al. 1986. <