Product Data Sheet

PE/Dazzle™ 594 anti-mouse/human CD11b

Catalog # / $1106280 / 100 \mu g$

Size: 1106275 / 25 µg

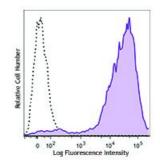
Clone: M1/70

Isotype: Rat IgG2b, ĸ

Immunogen: C57BL/10 splenocytes

Reactivity: Human

Preparation: The antibody was purified by affinity


chromatography and conjugated with PE/Dazzle™ 594 under optimal conditions. The solution is free of unconjugated PE/Dazzle™ 594 and

unconjugated antibody.

Phosphate-buffered solution, pH 7.2, Formulation:

containing 0.09% sodium azide.

0.2 Concentration:

C57BL/6 mouse bone marrow cells were stained with CD11b (clone M1/70) PE/Dazzle[™] 594 (filled histogram). Open histogram represents unstained cells. Data shown was gated on myeloid cell population.

Applications:

Applications: Flow Cytometry

Recommended

Usage:

Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of this reagent is ≤0.06 microg per million cells in 100 microL volume. It is recommended that the reagent be titrated for optimal performance for each application.

* PE/Dazzle™ 594 has a maximum excitation of 566 nm and a maximum

emission of 610 nm.

Application Notes: Clone M1/70 has been verified for immunocytochemistry (ICC) and frozen

immunohistochemistry (IHC-F).

Additional reported applications (for relevant formats of this clone) include:

immunoprecipitation^{1,4}, in vitro blocking^{3,9,12}, depletion^{2,8},

immunofluorescence microscopy 6,7,10 , and immunohistochemistry of acetone-fixed frozen sections $^{5,11-13}$ and paraffin sections 28 . The LEAF $^{\text{m}}$ purified antibody (Endotoxin <0.1 EU/μg, Azide-Free, 0.2 μm filtered) is recommended for functional assays (Cat. No. 101231). For in vivo studies or highly sensitive assays, we recommend Ultra-LEAF™ purified antibody (Cat. No. 101248) with a lower endotoxin limit than standard LEAF™ purified

antibodies (Endotoxin < 0.01 EU/µg).

Application References:

- 1. Springer T, et al. 1978. Eur. J. Immunol. 8:539. (IP)
- 2. Ault K and Springer T. 1981. J. Immunol. 126:359. (Deplete)
- 3. Springer TA, et al. 1982. Immunol. Rev. 68:171. (Block)
- 4. Ho MK and Springer TA. 1983. J. Biol. Chem. 258:2766. (IP)
- 5. Flotte TJ, et al. 1983. Am. J. Pathol. 111:112. (IHC)
- 6. Noel GJ, et al. 1990. J. Clin. Invest. 85:208. (IF)
- 7. Allen LA and Aderem A. 1996. *J. Exp. Med.* 184:627 (IF)
- 8. D'Amico A and Wu L. 2003. *J. Exp. Med.* 198:293. (Deplete)
- 9. Brickson SJ, et al. 2003. Appl Physiol. 95:969. (Block)
- 10. Clatworthy MR and Smith KG. 2004. J. Exp. Med. 199:717. (IF)
- 11. Hata H, et al. 2004. J. Clin. Invest. 114:582. (IHC)
- 12. Zhang Y, et al. 2002. J. Immunol. 168:3088. (IHC)
- 13. Iwasaki A and Kelsall BL. 2001. J. Immunol. 166:4884 (IHC, FC)
- 14. Tailleux L. 2003. J. Exp. Med. 197:121. (Block, FC)
- 15. Olver S, et al. 2006. Cancer Research 66:571. (FC)
- 16. Tan SL, et al. 2006. J. Immunol. 176:2872. (FC) PubMed
- 17. Ponomarev ED, et al. 2006. J. Immunol. 176:1402. (FC)
- 18. Dzhagalov I, et al. 2007. Blood 109:1620. (FC)
- 19. Fazilleau N, et al. 2007. Nature Immunol. 8:753.
- 20. Rasmussen JW, et al. 2006. Infect. Immun.74:6590. PubMed
- 21. Napimoga MH, et al. 2008. J. Immunol. 180:609. PubMed
- 22. Elqaraz-Carmon V, et al. 2008. J. Lipid. Res. 49:1894. PubMed
- 23. Kim DD, et al. 2008. Blood 112:1109. PubMed
- 24. Guo Y, et al. 2008. Blood 112:480. PubMed
- 25. Norian LA, et al. 2009. Cancer Res. 69:3086. (FC) PubMed
- 26. Baumgartner CK, et al. 2010. J. Immunol. 184:573. PubMed
- 27. Charles N, et al. 2010. Nat. Med. 16:701. (FC) PubMed
- 28. Whiteland J, et al. 1995. J. Histochem. Cytochem. 43:313. (IHC)

Description:

CD11b is a 170 kD glycoprotein also known as αM integrin, Mac-1 α subunit, Mol, CR3, and Ly-40. CD11b is a member of the integrin family, primarily expressed on granulocytes, monocytes/macrophages, dendritic cells, NK cells, and subsets of T and B cells. CD11b non-covalently associates with CD18 ($\beta 2$ integrin) to form Mac-1. Mac-1 plays an important role in cell-cell interaction by binding its ligands ICAM-1 (CD54), ICAM-2 (CD102), ICAM-4 (CD242), iC3b, and fibrinogen.

Antigen References:

- 1. Barclay A, et al. 1997. The Leukocyte Antigen FactsBook Academic Press.
- 2. Springer TA. 1994. Cell 76:301.
- 3. Coxon A, et al. 1996. Immunity 5:653.